Chimeric spike mRNA vaccines protect against Sarbecovirus challenge in mice - Science Magazine
A broad defense against SARS-like viruses
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the third coronavirus that has emerged as a serious human pathogen in the past 20 years. Treatment strategies that are broadly protective against current and future SARS-like coronaviruses are needed. Martinez et al. took on this challenge by developing vaccines based on chimeras of the viral spike protein. The messenger RNA vaccines encode spike proteins composed of domain modules from epidemic and pandemic coronaviruses, as well as bat coronaviruses with the potential to cross to humans. In aged mice vulnerable to infection, the chimeric vaccines protected against challenge from SARS-CoV, SARS-CoV-2 and tested variants of concern, and zoonotic coronaviruses with pandemic potential.
Science, abi4506, this issue p. 991
Abstract
The emergence of severe acute respiratory syndrome coronavirus (SARS-CoV) in 2003 and SARS-CoV-2 in 2019 highlights the need to develop universal vaccination strategies against the broader Sarbecovirus subgenus. Using chimeric spike designs, we demonstrate protection against challenge from SARS-CoV, SARS-CoV-2, SARS-CoV-2 B.1.351, bat CoV (Bt-CoV) RsSHC014, and a heterologous Bt-CoV WIV-1 in vulnerable aged mice. Chimeric spike messenger RNAs (mRNAs) induced high levels of broadly protective neutralizing antibodies against high-risk Sarbecoviruses. By contrast, SARS-CoV-2 mRNA vaccination not only showed a marked reduction in neutralizing titers against heterologous Sarbecoviruses, but SARS-CoV and WIV-1 challenge in mice resulted in breakthrough infections. Chimeric spike mRNA vaccines efficiently neutralized D614G, mink cluster five, and the UK B.1.1.7 and South African B.1.351 variants of concern. Thus, multiplexed-chimeric spikes can prevent SARS-like zoonotic coronavirus infections with pandemic potential.
A novel severe acute respiratory syndrome coronavirus (SARS-CoV) emerged in 2003 and caused more than 8000 infections and ~800 deaths worldwide (1). In 2012, the Middle East respiratory syndrome coronavirus (MERS-CoV) emerged in Saudi Arabia (2), with multiple outbreaks that have resulted in at least ~2600 cases and 900 deaths (3). In December 2019, another novel human SARS-like virus from the genus Betacoronavirus and subgenus Sarbecovirus emerged in Wuhan China, designated SARS-CoV-2, causing the ongoing COVID-19 pandemic (4, 5).
Bats are known reservoirs of SARS-like coronaviruses (CoVs) and harbor high-risk "preemergent" SARS-like variant strains, such as WIV-1-CoV and RsSHC014-CoV, which are able to use human ACE2 (angiotensin-converting enzyme 2) receptors for entry, replicate efficiently in human primary airway epithelial cells, and may escape existing countermeasures (6, 7). Given the high pandemic potential of zoonotic and epidemic Sarbecoviruses (8), the development of countermeasures such as broadly effective vaccines, antibodies, and drugs is a global health priority (9–11).
Sarbecovirus spike proteins have immunogenic domains: the receptor binding domain (RBD), the N-terminal domain (NTD), and the subunit 2 (S2) (12, 13). RBD, NTD, and to a lesser extent S2 are targets for potent neutralizing and non-neutralizing antibodies elicited to SARS-CoV-2 and MERS-CoV spike (12, 14–19). Passive immunization with SARS-CoV-2 NTD-specific antibodies protect naïve mice from challenge, demonstrating that the NTD is a target of protective immunity (12, 19, 20). However, it remains unclear whether vaccine-elicited neutralizing antibodies can protect against in vivo challenge with heterologous epidemic and bat coronaviruses. We generated nucleoside-modified mRNA-lipid nanoparticle (LNP) vaccines expressing chimeric spikes that contain admixtures of different RBD, NTD, and S2 modular domains from zoonotic, epidemic, and pandemic CoVs and examined their efficacy against homologous and heterologous Sarbecovirus challenge in aged mice.
Results
Design and expression of chimeric spike constructs to cover pandemic and zoonotic SARS-related coronaviruses
Sarbecoviruses exhibit considerable genetic diversity (Fig. 1A), and SARS-like bat CoVs (Bt-CoVs) are recognized threats to human health (6, 8). Because potent neutralizing antibody epitopes exist in each of the modular structures on CoV spikes (21), we hypothesized that chimeric spikes that encode NTD, RBD, and S2 domains into "bivalent" and "trivalent" vaccine immunogens have the potential to elicit broad protective antibody responses against clades I to III Sarbecoviruses. We designed four sets of chimeric spikes. Chimera 1 included the NTD from clade II Bt-CoV Hong Kong University 3-1 (HKU3-1), the clade I SARS-CoV RBD, and the clade III SARS-CoV-2 S2 (Fig. 1B). Chimera 2 included SARS-CoV-2 RBD and SARS-CoV NTD and S2 domains (11). Chimera 3 included the SARS-CoV RBD and SARS-CoV-2 NTD and S2, whereas chimera 4 included the RsSHC014 RBD and SARS-CoV-2 NTD and S2. We also generated a monovalent SARS-CoV-2 spike furin knockout (KO) vaccine, partially phenocopying the Moderna and Pfizer mRNA vaccines in human use, and a negative control norovirus GII capsid vaccine (Fig. 1, B and C). We generated these chimeric spikes and control spikes as lipid nanoparticle-encapsulated, nucleoside-modified mRNA vaccines with LNP adjuvants (mRNA-LNP), as described previously (22). This mRNA LNP stimulates robust T follicular helper cell activity, germinal center B cell responses, durable long-lived plasma cells, and memory B cell responses (23, 24). We verified their chimeric spike expression in human embryonic kidney (HEK) cells (fig. S1B). To confirm that scrambled coronavirus spikes are biologically functional, we also designed and recovered several high-titer recombinant live viruses of RsSHC014/SARS-CoV-2 NTD, RBD, and S2 domain chimeras that included deletions in nonessential, accessory open reading frame 7 (ORF7) and ORF8 that encoded nanoluciferase (fig. S1C). SARS-CoV-2 ORF7 and -8 antagonize innate immune signaling pathways (25, 26), and deletions in these ORFs are associated with attenuated disease in humans (27, 28).
(A) Genetic diversity of pandemic and bat zoonotic coronaviruses. HKU3-1 is shown in yellow, SARS-CoV is shown in light blue, RsSHC014 is shown in orange, and SARS-CoV-2 is shown in purple. (B) Spike chimera 1 includes the NTD from HKU3-1, the RBD from SARS-CoV, and the rest of the spike from SARS-CoV-2. Spike chimera 2 includes the RBD from SARS-CoV-2 and the NTD and S2 from SARS-CoV. Spike chimera 3 includes the RBD from SARS-CoV and the NTD and S2 SARS-CoV-2. Spike chimera 4 includes the RBD from RsSHC014 and the rest of the spike from SARS-CoV-2. SARS-CoV-2 furin KO spike vaccine and is the norovirus capsid vaccine. (C) Table summary of chimeric spike constructs.
Immunogenicity of mRNAs expressing chimeric spike constructs against coronaviruses
We next sought to determine whether simultaneous immunization with mRNA-LNP expressing the chimeric spikes of diverse Sarbecoviruses was a feasible strategy to elicit broad binding and neutralizing antibodies. We immunized aged mice with the chimeric spikes formulated to induce cross-reactive responses against multiple divergent clades I to III Sarbecoviruses, a SARS-CoV-2 furin KO spike, and a GII.4 norovirus capsid negative control. Group 1 was primed and boosted with chimeric spikes 1, 2, 3, and 4 (fig. S1A). Group 2 was primed with chimeric spikes 1 and 2 and boosted with chimeric spikes 3 and 4 (fig. S1A). Group 3 was primed and boosted with chimeric spike 4 (fig. S1A). Group 4 was primed and boosted with the monovalent SARS-CoV-2 furin KO spike (fig. S1A). Last, group 5 was primed and boosted with a norovirus capsid GII.4 Sydney 2011 strain (fig. S1A). We then examined the binding antibody responses by means of enzyme-linked immunosorbent assay (ELISA) against a diverse panel of CoV spike proteins that included epidemic, pandemic, and zoonotic coronaviruses.
Mice in groups 1 and 2 generated the highest-magnitude responses to SARS-CoV Toronto Canada isolate (Tor2), RsSHC014, and HKU3-1 spike as compared with group 4 (Fig. 2, A, G, and H). Whereas mice in group 2 generated lower-magnitude binding responses to both SARS-CoV-2 RBD (Fig. 2C) and SARS-CoV-2 NTD (Fig. 2D), mice in group 1 generated similar-magnitude binding antibodies to SARS-CoV-2 D614G (in which aspartic acid at position 614 is replaced with glycine) as compared with that of mice immunized with the SARS-CoV-2 furin KO spike mRNA-LNP (Fig. 2B). Mice in groups 1 and 2 generated similar-magnitude binding antibody responses against SARS-CoV-2 D614G, Pangolin GXP4L, and RaTG13 spikes (Fig. 2, B, E, and F) compared with those of mice from group 4. Mice in group 1 and group 4 elicited high-magnitude levels of hACE2 blocking responses, as compared with those of groups 2 and 3 (Fig. 2J). Because binding antibody responses after boost mirrored the trend of the after-prime responses, it is likely that the second dose is boosting immunity to the vaccine antigens in the prime (Fig. 2). Last, we did not observe cross-binding antibodies against common-cold CoV spike antigens from HCoV-HKU1, HCoV-NL63, and HCoV-229E in most of the vaccine groups (fig. S2, A to D), but we did observe low binding levels against more distant group 2C MERS-CoV (Fig. 2I) and other Betacoronaviruses such as group 2A HCoV-OC43 in vaccine groups 1 and 2 (fig. S2B). These results suggest that chimeric spike vaccines elicit broader and higher-magnitude binding responses against pandemic and bat SARS-like viruses as compared with those of monovalent SARS-CoV-2 spike vaccines.
Serum antibody ELISA binding responses were measured in the five different vaccination groups. Before immunization, after prime, and after boost binding responses were evaluated against Sarbecoviruses, MERS-CoV, and common-cold CoV antigens including (A) SARS-CoV Toronto Canada (Tor2) S2P, (B) SARS-CoV-2 S2P D614G, (C) SARS-CoV-2 RBD, (D) SARS-CoV-2 NTD, (E) Pangolin GXP4L spike, (F) RaTG13 spike, (G) RsSHC014 S2P spike, (H) HKU3-1 spike, (I) MERS-CoV spike, and (J) hACE2 blocking responses against SARS-CoV-2 spike in the distinct immunization groups. Blue squares indicate mice from group 1, orange triangles indicate mice from group 2, green triangles indicate mice from group 3, red rhombuses indicate mice from group 4, and upside-down triangles indicate mice from group 5. Statistical significance for the binding and blocking responses is reported from a Kruskal-Wallis test after Dunnett's multiple comparison correction. *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001.
Neutralizing antibody responses against live Sarbecoviruses and variants of concern
We then examined the neutralizing antibody responses against SARS-CoV, Bt-CoV RsSHC014, Bt-CoV WIV-1, and SARS-CoV-2 including variants of concern using live viruses as previously described (Fig. 3, A to D) (17). Group 4 SARS-CoV-2 S mRNA–vaccinated animals mounted a robust response against SARS-CoV-2; however, responses against SARS-CoV, RsSHC014, and WIV-1 were 18-, >300- or 116-fold decreased, respectively (Fig. 3, A to D, and fig. S3, G and H). By contrast, aged mice in group 2 showed a 42- and twofold increase in neutralizing titer against SARS-CoV and WIV1 and less than onefold decrease against RsSHC014 relative to SARS-CoV-2 neutralizing titers (Fig. 3, A to D, and fig. S3, C and D). Mice in group 3 elicited thee- and sevenfold increased neutralizing titers against SARS-CoV and RsSHC014 yet showed a threefold decrease in WIV-1 neutralizing titers relative to SARS-CoV-2 (Fig. 3, A to D, and fig. S3, E and F). Last, mice in group 1 generated the most balanced and highest neutralizing titers, which were 13- and 1.2-fold increased against SARS-CoV and WIV-1 and less than onefold decreased against RsSHC014 relative to the SARS-CoV-2 neutralizing titers (Fig. 3, A to D, and fig. S3, A and B). The serum of mice from groups 1 and 4 neutralized the dominant D614G variant with similar potency as that of the wild-type D614 nonpredominant variant, and both groups had similar neutralizing antibody responses against the UK B.1.1.7 and the mink cluster 5 variant as compared with the D614G variant (Fig. 3, E and F). Despite the significant but small reduction in neutralizing activity against the B.1.351 variant of concern (VOC), we did not observe a complete ablation in neutralizing activity in either group. Mice from groups 1 and 2 elicited lower binding and neutralizing responses to SARS-CoV-2 as compared with those of group 4, perhaps reflecting a decreased amount of mRNA vaccine incorporated into multiplexed formulations; the monovalent vaccines may drive a more focused B cell response to SARS-CoV-2, whereas chimeric spike antigens lead to more breadth against distant Sarbecoviruses. Thus, both monovalent SARS-CoV-2 vaccines and multiplexed chimeric spikes elicit neutralizing antibodies against newly emerged SARS-CoV-2 variants, and multiplexed chimeric spike vaccines outperform the monovalent SARS-CoV-2 vaccines in terms of breadth against multiclade Sarbecoviruses.
Neutralizing antibody responses in mice from the five different vaccination groups were measured by using nanoluciferase-expressing recombinant viruses. (A) SARS-CoV neutralizing antibody responses from baseline and after boost in the distinct vaccine groups. (B) SARS-CoV-2 neutralizing antibody responses from baseline and after boost. (C) RsSHC014 neutralizing antibody responses from baseline and after boost. (D) WIV-1 neutralizing antibody responses from baseline and after boost. (E) The neutralization activity in groups 1 and 4 against SARS-CoV-2 D614G, South African B.1.351, UK B.1.1.7, and mink cluster 5 variant. (F) Neutralization comparison of SARS-CoV-2 D614G versus South African B.1.351, versus UK B.1.1.7, and versus mink cluster 5 variant. Statistical significance for the live-virus neutralizing antibody responses is reported from a Kruskal-Wallis test after Dunnett's multiple comparison correction. *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001.
Comments
Post a Comment